Matching with Contracts

Hatfield and Milgrom (AER, Sep 2005) summary by N. Antić

Examines connection between two-sided matching and auction/contract theory. Echenique (2012, AER) shows this model can be embedded in the Kelso-Crawford (1982, ECTA) framework. The extension by Hatfiled-Kojima (2010, JET) does not embed in the older framework, thus this is a good workhorse model.

Basic Model

- \blacksquare Finite sets of doctors and hospitals D and H, respectively
- \blacksquare X is a finite set of contracts (generic)
 - A contract $x \in X$ matches a doctor, x_D , and hospital, x_H
 - x may contain more information, e.g., doctor's wage
 - $A \subset X$ is an allocation if $\forall (d, h), (d', h') \in A, d \neq d'$
- $\blacksquare \succ_d \text{ is a total order on } X_d \cup \{\emptyset\}, X_d := \{x \in X \mid x_D = d\}$
 - Contract x is acceptable to doctor d if $x \succ_d \emptyset$
 - Given $Y \subset X$, let $C_d(Y) = \max_{\succeq_d} (X_d \cap Y \cup \{\emptyset\})$
 - $C_D(Y) = \bigcup_d C_d(Y)$ denotes accepted contracts • $R_D(Y) = Y \setminus C_D(Y)$ denotes rejected contracts
- $\forall Y \subset X$, hospital preferences are given by a choice correspondence, $C_h(Y) \subset Y_h := \{x \in Y \mid x_H = h\}$, where for any $x, x' \in C_h(Y), x \neq x' \Rightarrow x_D \neq x'_D$

• Let
$$C_H(Y) = \bigcup_h C_h(Y), R_H(Y) = Y \smallsetminus C_H(Y)$$

 \blacksquare A set of contracts $A \subset X$ is a stable allocation if

S1. $C_D(A) = C_H(A) = A$, and S2. $\nexists h \in H, Y \subset X$ s.t. $Y = C_h(A \cup Y) \subset C_D(A \cup Y)$

Theorem 1. If $(X_D, X_H) \subset X^2$ solves the system:

$$X_D = X \smallsetminus R_H(X_H),$$

$$X_H = X \smallsetminus R_D(X_D),$$

then $A := X_H \cap X_D$ is a stable allocation and $A = C_H(X_H) = C_D(X_D)$. Conversely, for any stable A, there exist X_D, X_H satisfying the system such that $A = X_H \cap X_D$.

Proof. (\Rightarrow) $A := X_H \cap X_D = X_D \setminus R_D(X_D) = C_D(X_D)$; similarly $A = C_H(X_H)$. By revealed preference $A = C_D(X_D) = C_D(A) = C_H(A) = C_H(X_H)$, thus A satisfies S1. Fix h and some $Y_h \subset C_D(A \cup Y_h)$. Since $A = C_D(X_D)$, by doctors' revealed preferences, $Y_h \cap X_D \subset C_D(X_D)$ and thus

$$Y_h \cap R_D(X_D) = Y_h \cap X_D \cap R_D(X_D) \subset C_D(X_D) \cap R_D(X_D) = \emptyset.$$

Hence, $Y_h \subset X \setminus R_D(X_D) = X_H$ and so if $Y_h \neq C_h(A)$, then $Y_h \prec_h C_h(X_h) = C_h(A)$. Thus $Y_h \neq C_h(A \cup Y_h)$ and S2 holds.

 (\Leftarrow) Let A be a stable allocation. Note that $A = C_H(A) = C_D(A)$. Define:

$$X_H = \bigcup_{d \in D} \{ x \in X_d \cup \{ \emptyset \} : x \succeq_d A_d \},$$

$$X_D = \bigcup_{d \in D} \{ x \in X_d \cup \{ \emptyset \} : x \preceq_d A_d \}.$$

Clearly $A, X_D \setminus A, X_H \setminus A$ is a partition of X. If $C_h(X_H) \neq A_h$, then $Y = C_h(X_H)$ violates S2. Thus $C_H(X_H) = A$, since $C_h(X_H) = A_h$ for all h. Hence:

$$X \smallsetminus R_H(X_H) = X \smallsetminus (X_H \smallsetminus A) = X_D, \text{ and} X \smallsetminus R_D(X_D) = X \smallsetminus (X_D \smallsetminus C_D(X_D)) = X_H,$$

since by definition $C_D(X_D) = A$.

- Elements of X are substitutes for h if $R_h(Y) \subset R_h(Z)$ for any $Y \subset Z \subset X$
 - i.e., if R_h is isotone (order-perserving) with resepct to \subset

- New contracts make hospital weakly less interested in old
- Coincides with demand theory definition in the appropriate setting (Theorem 2)

Generalized Deferred Acceptance (DA) Algorithm

 $\blacksquare Generalized DA algorithm, F: X \times X \to X \times X$

$$F(X_D, X_H) = (X \setminus R_H(X_H), X \setminus R_D(X \setminus R_H(X_H)))$$

• R_D (by revealed preference) and R_H (by assumption) are isotone, and thus F is also isotone wrt \geq , defined as:

$$F(X_D, X_H) \ge F(Y_D, Y_H)$$
 iff $Y_D \subset X_D$ and $X_H \subset Y_H$

Theorem (Tarski). If (L, \geq) is a complete lattice and $f: L \to L$ is isotone, then f has a fixed point. Further, if P is the set of fixed points of f, then (P, \geq) is a complete lattice.

■ A special case of this is the existence theorem in the paper

Theorem 3. Suppose contracts are substitutes for hospitals. Then:

- (a) The set of fixed points of F is a complete (finite) lattice
- (b) Starting at (X, \emptyset) , iteration on F converges monotonically to the highest fixed point $(\overline{X}_D, \overline{X}_H)$
- (c) Starting at (\emptyset, X) , iteration on F converges monotonically to the lowest fixed point $(\underline{X}_D, \underline{X}_H)$
- The highest [lowest] fixed point is the stable allocation most preferred by doctors [hospitals] (Theorem 4)
 - Starting at (X, \emptyset) is equivalent to doctor-proposing DA
 - Starting at (\emptyset, X) is equivalent to hospital-proposing DA
- To see equivalence with doctor-proposing DA:
 - Define set $X_H(t)$ as the cumulative contracts offered by doctors to hospitals up to iteration t
 - Define $X_D(t)$ as the cumulative set of contracts that have not yet been rejected by hospitals up to iteration t
 - $X_H(t) \cap X_D(t)$ are contracts conditinally accepted
 - Using the definition of F, we have that:

$$X_{D}(t) = X \smallsetminus R_{H}(X_{H}(t-1)),$$

$$X_{H}(t) = X \smallsetminus R_{D}(X_{D}(t)).$$
(1)

■ If $|H| \ge 2$, and R_h is not isotone for some h, then there exists a preference profile for doctors and a preference profile for another hospital h', which has a single job opening, such that no stable match exists (Theorem 5)

• i.e., substitutes assumption almost needed for existence

Properties of Generalized DA

- Vacancy chain dynamics can be described by adjusting F to reject all offers made to a retiring doctor
 - After a doctor retires, a new stable allocation is achieved by iteration on the adjusted F; unretired doctors weakly better off and hospitals weakly worse off (Theorem 6)
- The preferences of hospital $h \in H$ satisfy the law of aggregate demand if for all $Y \subset Z$, $|C_h(Y)| \leq |C_h(Z)|$
 - If more contracts are offered, each hospital should demand weakly more contracts
 - This can be characterized nicely in the matching with wages setting:

Theorem 7. If hospital h's preferences are quasi-linear and satisfy the substitutes condition, then they satisfy the law of aggregate demand.

■ A rural hospital theorem also holds in matching with contracts

Theorem 8. If hospital preferences satisfy substitutes and the law of aggregate demand, then for every stable allocation (X_D, X_H) and every $d \in D$ and $h \in H$, $|C_d(X_D)| = |C_d(\overline{X}_D)|$ and $|C_h(X_H)| = |C_h(\overline{X}_H)|$.

- Hospitals and doctors always get the same number of contracts
 - Necessity of law of aggregate demand for this result:

Theorem 9. If there exists a hospital h, sets $Y \subset Z \subset X$ such that $|C_h(Y)| > |C_h(Z)|$, and |H| > 1, then there exist singleton preferences for the other hospitals and doctors such that the number of doctors employed by h is different for two stable matches.

- Truth-telling is optimal in a few senses
- Let hospitals' preferences satisfy substitutes and the law of aggregate demand, and let the matching algorithm produce the doctor-optimal match. Then, fixing the preferences of the other doctors and of all the hospitals, let x be the contract that d obtains by submitting the set of preferences Pd : z1 d
- Let hospital h have preferences such that $|C_h(X)| > |C_h(X \cup \{x\})|$ and let there exist two contracts y, z such that $y_D \neq x_D \neq z_D$ and $y, z \in R_h(X \cup \{x\}) R_h(X)$. Then if another hospital h' exists, there exist singleton preferences for the hospitals besides h and preferences for the doctors such that it is not a dominant strategy for all doctors to reveal their preferences truthfully.

Relationship to Proxy Auctions

- The algorithm described by 1 may not converge if substitutes assumption fails, even if a fixed point exists
- The following algorithm is yet another characterization of DA and is suitable for the non-substitutes case, when there is just one hospital (the auctoneer)

$$X_{D}(t) = X \setminus R_{H}(X_{H}(t-1)), X_{H}(t) = X_{H}(t-1) \cup C_{D}(X_{D}(t)).$$
(2)

Theorem 15. Under the substitute assumption, with $X_D(0) = X$ and $X_H(0) = \emptyset$, the sequences of pairs $\{(X_D(t), X_H(t))\}$ generated by the two laws of motion 1 and 2 are identical.

■ The difference between the 1 and 2 is the second equation

• In 2, $X_H(t)$ monotonic even if R_h is not isotone

Theorem 16. When the doctor-offering cumulative offer process with a single hospital terminates at time t with outcome $(X_D(t), X_H(t))$, the hospital's choice $C_H(X_H(t))$ is a stable collection of contracts.

April 24, 2013 Applied Theory Working Group Discussion

Attendees: Sylvain Chassang, Stephen Morris, Ben Brooks, Konstantinos Kalfarentzos, Kai Steverson, Doron Ravid, Olivier Darmouni, Dan Zeltzer, Nemanja Antić